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Credits 

  Some of these slides were sourced and/or modified 
from Simon Prince, University College London 
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Subspace Models 

  Often in machine learning problems, input vectors have high 
dimensionality D 
  for an 1800 x 1200 colour image, D≅6.5 million. 

  for a 1-second acoustic voice signal sampled at 5kHz, D = 5,000 

  There is typically insufficient training data to learn a 
probabilistic model in such a high-dimensional space. 

  Fortunately, these signals usually live in a much smaller 
subspace, or manifold, of this high-dimensional space. 
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Subspace Models 

  For example, you will have to wait a long time 
before a sample of white noise looks like a natural 
image. 
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Subspace Models 

  e.g., standard transformations (e.g., translations, 
rotations, scalings) of objects produce images 
populating a low-dimensional manifold embedded 
in this high-dimensional space 
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Subspace Models 

  The goal of subspace methods is to discover the 
low-dimensional subspace in which the data lie and 
exploit the lower-dimensionality to allow efficient 
and detailed modeling. 

1u
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Subspace Models 

  We will mainly consider linear subspaces 
 A line if D=2 
 A line or a plane if D=3 
 A hyperplane of dimensionality [1,...,D-1] for higher D 

  But we will also consider some methods to deal with 
nonlinear manifolds. 



Principal Component Analysis 
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Principal Component Analysis 

  PCA finds the linear subspace that 
 maximizes the explained variance 
 equivalently, minimizes the unexplained variance 

  PCA can be applied to any multidimensional dataset 
  (data do not have to be Gaussian) 
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Maximum Variance Formulation 

    
Observations x

n{ },n = 1,…N

   Observation xn  is a high-dimensional vector of dimension D

  Goal:  Project the data onto subspace of dimension M  <  D

  Consider a direction in the data space given by unit vector u1.

x2

x1

xn

x̃n

u1

  The mean of the projected data is u1
tx.

 Now imagine projecting all of the data onto this unit vector.

   
Let x =

1
N

xn
i=1

N

!  be the sample mean and S =
1
N

xn " x( ) xn " x( )t
i=1

N

!  be the sample covariance

   
The variance of the projected data is 1

N
u1

txn !u1
tx( )2

i=1

N

" = u1
tSu1
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Maximum Variance Formulation 

x2

x1

xn

x̃n

u1

  We want to select the unit vector u1 that maximizes the projected variance u1
tSu1

  To do this, we use  a Lagrange multiplier !1 to maintain the constraint that u1 be a unit vector.

  Thus we seek to maximize u1
tSu1 + !1 1"u1

tu1( )

   Setting the derivative with respect to u1 to 0, we have Su1 = !1u1

  Thus u1 is an eigenvector of S.

  Left-multiplying by u1
t,  we see that the projected variance u1

tSu1 = !1.

 

Thus to maximize projected variance, we select 
the eigenvector with largest associated eigenvalue !1.

 !1

 !1
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Dimensionality Reduction 

  The next direction u2 can be chosen by maximizing the projected variance 
in the D-1dimensional subspace orthogonal to u1. 

  Thus u2 is the eigenvector of S with the second-largest eigenvalue, and so 
on… 

  Typically, most of the variance is captured in a relatively small linear 
subspace. 
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Computational Cost 

  Computing full eigenvector decomposition is O(D3). 
  If we only need the first M eigenvectors, the cost is 

O(MD2). 
  However, this could still be very expensive if D is 

large 

  For classification or regression, this is precisely the 
situation where we need PCA, to reduce the number 
of parameters in our model and therefore prevent 
overlearning! 

  e.g.,  For an 1800 !1600 image and M = 100, O(650 million)
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Computational Cost 

  In many cases, the number of training vectors N is much smaller than D, and 
this leads to a trick:  

   Let X be the N ! D  centred data matrix whose nth row is given by xn - x( )t .

   
Then the sample covariance matrix is S =

1
N

XtX.

   
and the eigenvector equation is 1

N
XtXui = !iui

   
Pre-multiplying both sides by X yields 1

N
XXt Xui( ) = !i Xui( )

  Now letting  vi = Xui,  we have

   
1
N

XXtvi = !ivi

 D ! D

 N ! N

Much smaller eigenvector problem! 
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Computational Cost 

  To find the eigenvectors of S, we premultiply by Xt: 

   

1
N

XXtvi = !ivi "
1
N

XtX
#
$%

&
'(

Xtvi( ) = !i Xtvi( )
 N ! N

 S

   
and, normalized to unit length, the eigenvectors are ui =

1
N! i

Xtvi

  

Note that these N  eigenvectors live in the N-dimensional subspace 
spanned by the training images.



Other Applications of PCA 
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Other Applications of PCA 

  We have motivated PCA as a method for reducing 
the dimensionality of the input space and therefore 
the number of parameters that must be learned for 
classification or regression. 

  This will help to reduce overlearning. 
  But there are other applications of PCA… 
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Standardization 

  Input vectors are often heterogeneous in that values might vary 
widely on some dimensions relative to others. 

  This is particularly true when input vectors are composed of 
different kinds of measurements, perhaps measured in 
different units. 

  Example: 
  We may try to classify a patient in a hospital setting based upon: 

  Age (years) 
  Resting pulse (beats per minute) 
  Body temperature (degrees Celsius) 
  … 

  For pattern recognition algorithms to work well, it is often important 
that the data be standardized along these different dimensions. 
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Pre-Whitening 

  Then the transformation 

     

     does three things: 
1.  Shifts the data to the origin, so that the transformed data have zero mean. 

2.  Rotates the data into the principal axes, decorrelating the data (diagonal 
covariance) 

3.  Scales the data by the inverse standard deviation along each principal axis, 
thus normalizing the variance in all directions (covariance = identity matrix). 

   yn = !"1/2U t xn " x( )

  Let ! be the D " D diagonal matrix whose diagonal elements ! ii  are the associated eigenvalues #i .
   Let U  be the D ! D matrix whose columns are the D orthonormal eigenvectors ui  of S.
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Pre-Whitening 
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Compression 

  PCA can be used to compress data.  Since the D eigenvectors ui  of the 
covariance matrix form a complete orthonormal basis, any input xn can be 
described by a linear combination of these eigenvectors: 

  Taking the inner product with uj, we obtain   , and so 

  In other words, the input vector is simply the sum of the linear projections 
onto the eigenvectors.  Note that describing xn in this way still requires D 
numbers (the αni):  no compression yet! 

   
xn = ! niui

i=1

D

"

  
! ni = xn

tu j

   

x
n
= x

n

t
u

i( )u
i

i=1

D

! .
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Compression 

  But suppose we only use the first M eigenvectors to code xn.  We could then 
reconstruct an approximation to xn as: 

  Now to describe xn, we only have to transmit M numbers (the zni).  (Note 
that the bi are common to all inputs – not a function of xn.) 

  It can be shown that for minimum expected squared error, the optimal basis 
U is indeed the eigenvector basis, and the optimal coefficients are: 

  In other words, we approximate xn as the sum of: 
  The projections of the input vector on the M eigenvectors with largest associated 

eigenvalues, and  

  The projections of the mean vector on the remaining D - M eigenvectors. 

  
znj = xn

tu j

    
xn ! zniui

i=1

M

! + biui
i=M+1

D

!

  
b

j
= xt u

j
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Example 

  Suppose we need to transmit images for the handwritten digit ‘3’.   

  Each image is 28 x 28 pixels:  each transmission costs 784 bytes. 

  Instead:  the transmitter and receiver both store the D principal components 
(eigenvectors). 

  The transmitter then sends only the M scalar projections onto the first M of 
these eigenvectors. 

  If each projection is stored as an 8-byte floating point number, the cost of 
each transmission is 8 x M bytes. 

Original M = 1 M = 10 M = 50 M = 250
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Modeling 

 x +!u1

Low-dimensional model of variation of registered objects such as faces 

 x +!u1

 x +!u1  x +!u1


